Database

ClickHouse


ClickHouse is a fast open-source column-oriented database management system that allows generating analytical data reports in real-time using SQL queries.

The ClickHouse Wrapper allows you to read and write data from ClickHouse within your Postgres database.

Supported Data Types

Postgres TypeClickHouse Type
booleanUInt8
smallintInt16
integerUInt16
integerInt32
bigintUInt32
bigintInt64
bigintUInt64
realFloat32
double precisionFloat64
textString
dateDate
timestampDateTime
*Nullable<T>

Preparation

Before you get started, make sure the wrappers extension is installed on your database:


_10
create extension if not exists wrappers with schema extensions;

and then create the foreign data wrapper:


_10
create foreign data wrapper clickhouse_wrapper
_10
handler click_house_fdw_handler
_10
validator click_house_fdw_validator;

Secure your credentials (optional)

By default, Postgres stores FDW credentials inide pg_catalog.pg_foreign_server in plain text. Anyone with access to this table will be able to view these credentials. Wrappers is designed to work with Vault, which provides an additional level of security for storing credentials. We recommend using Vault to store your credentials.


_10
-- Save your ClickHouse credential in Vault and retrieve the `key_id`
_10
insert into vault.secrets (name, secret)
_10
values (
_10
'clickhouse',
_10
'tcp://default:@localhost:9000/default'
_10
)
_10
returning key_id;

Connecting to ClickHouse

We need to provide Postgres with the credentials to connect to ClickHouse, and any additional options. We can do this using the create server command:


_10
create server clickhouse_server
_10
foreign data wrapper clickhouse_wrapper
_10
options (
_10
conn_string_id '<key_ID>' -- The Key ID from above.
_10
);

Some connection string examples:

  • tcp://user:password@host:9000/clicks?compression=lz4&ping_timeout=42ms
  • tcp://default:PASSWORD@abc.eu-west-1.aws.clickhouse.cloud:9440/default?connection_timeout=30s&ping_before_query=false&secure=true

Check more connection string parameters.

Creating Foreign Tables

The ClickHouse Wrapper supports data reads and writes from ClickHouse.

IntegrationSelectInsertUpdateDeleteTruncate
ClickHouse

For example:


_10
create foreign table my_clickhouse_table (
_10
id bigint,
_10
name text
_10
)
_10
server clickhouse_server
_10
options (
_10
table 'people'
_10
);

Foreign table options

The full list of foreign table options are below:

  • table - Source table name in ClickHouse, required.

    This can also be a subquery enclosed in parentheses, for example,


    _10
    table '(select * from my_table)'

    Parametrized view is also supported in the subquery. In this case, you need to define a column for each parameter and use where to pass values to them. For example,


    _13
    create foreign table test_vw (
    _13
    id bigint,
    _13
    col1 text,
    _13
    col2 bigint,
    _13
    _param1 text,
    _13
    _param2 bigint
    _13
    )
    _13
    server clickhouse_server
    _13
    options (
    _13
    table '(select * from my_view(column1=${_param1}, column2=${_param2}))'
    _13
    );
    _13
    _13
    select * from test_vw where _param1='aaa' and _param2=32;

  • rowid_column - Primary key column name, optional for data scan, required for data modify

Query Pushdown Support

This FDW supports where, order by and limit clause pushdown, as well as parametrized view (see above).

Examples

Some examples on how to use ClickHouse foreign tables.

Basic example

This will create a "foreign table" inside your Postgres database called people:


_11
-- Run below SQLs on ClickHouse to create source table
_11
drop table if exists people;
_11
create table people (
_11
id Int64,
_11
name String
_11
)
_11
engine=MergeTree()
_11
order by id;
_11
_11
-- Add some test data
_11
insert into people values (1, 'Luke Skywalker'), (2, 'Leia Organa'), (3, 'Han Solo');

Create foreign table on Postgres database:


_16
create foreign table people (
_16
id bigint,
_16
name text
_16
)
_16
server clickhouse_server
_16
options (
_16
table 'people'
_16
);
_16
_16
-- data scan
_16
select * from people;
_16
_16
-- data modify
_16
insert into people values (4, 'Yoda');
_16
update people set name = 'Princess Leia' where id = 2;
_16
delete from people where id = 3;